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Compressed Sensing & Spare Approximation

Signal x ∈ RN, k -sparse.

Sensing matrix A ∈ Rn×N; measurements y = Ax , (n ≪ N).

Problem (Pk
0 ) : min

x∈RN
‖x‖0 s.t. Ax = y .

Solution: lq minimizations & Greedy Algorithms (OMP, IHT, ...)

Rank Minimization & Matrix Completion

Matrix X ∈ Rm×n, low rank rank(X) ≤ r .

Linear map A(X) : Rm×n → Rp; measurements
y = A(X) ∈ Rp .

Problem (P r
0) : min

X
rank(X) s.t. A(X) = y .

Solution: || · ||∗ minimizations, & Greedy Algorithms (SVT, ...)
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CS Applications

Medical Imaging: MRI, fMRI, Radiology, ...

Infrared spectroscopy & Seismic imaging

Single pixel camera & Analog-to-digital converters

DNA micro-arrays, radar, wireless communications, ...

Tools of Analysis

Coherence [Donoho & Huo; Elad & Bruckstein]

Restricted isometry property [Candès & Tao]

Nullspace property [Donoho & Huo]

Stochastic geometry [Donoho; Donoho & Tanner]

Message passing [Donoho, Maleki & Montanari]
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RIP certainly a popular tool of analysis; FoCM’11?

With the introduction of RIP1, we refer to the standard RIP as
RIP2 - the subscripts 1 & 2 refer to the norms used

Definition

RIC2 of A of order k is the smallest number Rk , for all k -sparse x,
such that

(1 − Rk )‖x‖22 ≤ ‖Ax‖22 ≤ (1 + Rk )‖x‖22

Definition (Rank Minimization Equivalence)

RIC2 of A(X), the r-restricted isometry constant, is the smallest
number Rr , for all matrices X of rank at most r , such that

(1 − Rr) ||X ||2F ≤ ||A(X)||22 ≤ (1 + Rr) ||X ||2F
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A having RIP2 means that A is a near isometry for k -sparse x

RIP2 gives a sufficient guarantees for exact recovery

ℓ1 minimization works if:

R3k + 3R4k < 2, [Candès, Romberg & Tao, 2006]

R2k <
√

2 − 1, [E. Candès, 2008]

R2k < 2/(3 +
√

7/4) ≈ 0.4627, [S. Foucart, 2010]

Similarly for Greedy Algorithms:

IHT: R3k < 1/
√

3, [S. Foucart, 2011]

CoSaMP: R4k <

√
2/(5 +

√
73), [S. Foucart, 2011]

Subspace Pursuit (SP): R3k . 0.06, [Dai & Milenkovic, 2009]
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A more quantitative definition is the asymmetric RIP2:

Definition

RIC2 of A of order k is the smallest L & U, for all k -sparse x, s.t.

(1 − L(k , n,N;A))‖x‖22 ≤ ‖Ax‖22 ≤ (1 + U(k , n,N;A))‖x‖22 .

RIC2 of A & eigenvalues of A ∗K AK , for Ω = {1, 2, 3, . . . ,N}
1 + U(k , n,N;A) := max

K⊂Ω,|K |=k
λmax

(
A ∗K AK

)

1 − L(k , n,N;A) := min
K⊂Ω,|K |=k

λmin
(
A ∗K AK

)

Thus L & U are smallest & largest deviation from unity of
smallest & largest λ

(
A ∗K AK

)
respectively
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RIC2 combinatorial, intractable for deterministic A , NP-hard

Probabilistic bounds possible⇒ the use of random matrices
Different approaches include:

Largest ensembles with bounded RIC2, [Mandelson et. al.]
RIC2 bounds for partial Fourier matrices, [H. Rauhut]
RIC2 bounds for Gaussian matrices, [C. & Tao; B.C.T.]

Goal:

Calculate accurate RIC2 bounds for Gaussian random matrices
with entries drawn i.i.d. from N(0, 1/n)

Motivation:

(1) Using the Gaussian to model zero mean i.i.d ensembles
(2) Easier! - Lot of literature available on the Gaussian ensemble
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Linear growth or proportional-growth asymptotics(p.g.a)

Problem instances (k , n,N) considered is where the following
ratios converge to nonzero bounded limits:
k
n = ρn → ρ and n

N = δn → δ for (δ, ρ) ∈ (0, 1)2 as (k , n,N)→ ∞.

Theorem

Let A be a matrix of size n × N whose entries are drawn i.i.d. from
N(0, 1/n). For any ǫ > 0, in the proportional-growth asymptotics

P(L(k , n,N) < LBT (δ, ρ)+ǫ)→ 1 & P(U(k , n,N) < UBT (δ, ρ)+ǫ)→ 1

exponentially in n.

Prior bounds by Candès & Tao; and Blanchard et. al. (BCT)
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Derivation technique: finding smallest λmax (δ, ρ) > 0 such
that in the p.g.a, for Uk = U(k , n,N;A),

P (1 + Uk > λ
max (δ, ρ)) = P

(
max

K⊂Ω,|K |=k
λmax (A ∗K AK ) > λ

max (δ, ρ)

)
→ 0

Candès & Tao used union bounds and concentration of
measure bounds on the extreme eigenvalues of Wishart
matrices - valid for sub-gaussian matrices

P

(
max

K⊂Ω,|K |=k
λmax

(
A ∗K AK

)
> λmax (δ, ρ)

)

≤
(
N
k

)
P

(
λmax

(
A ∗K AK

)
> λmax (δ, ρ)

)

where λmax (δ, ρ) :=
[
1 +
√
ρ+ (2δ−1H(δρ))1/2

]2

Their upper bound is then UCT(δ, ρ) := λmax (δ, ρ) − 1
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BCT achieved tighter bounds using union bounds and bounds
of probability density functions of the extreme eigenvalues of
Wishart matrices [A. Edelman, 1989]

P
(

max
K⊂Ω,|K |=k

λmax (A ∗K AK ) > λ
max (δ, ρ)

)
≤

∫ ∞

λmax(δn ,ρn)

(
N
k

)
fmax(m, n; λ)dλ

But fmax(m, n; λ) ≤ pmax(n, λ; ρ) exp (n · ψmax(λ, ρ)) where
ψmax (λ, ρ) :=

1
2 [(1 + ρ) ln λ − ρ ln ρ+ 1 + ρ − λ]

Bounding
(
N
k

)
by the Stirling’s formula the exponent of the

exponential term becomes δψmax (λ
max (δ, ρ) , ρ) + H(δρ)

In the p.g.a only the exponential term matters and
λmax (δ, ρ) becomes a solution to when the exponent is zero

Their upper bound is thus UBCT(δ, ρ) = λmax (δ, ρ) − 1
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Improvement on BCT bounds achieved by grouping
submatrices, i.e. for AK and AK ′ with |K ∩ K ′| ≫ 1, hence
decreasing the combinatorial term significantly

P
(

max
K⊂Ω,|K |=k

λmax(A ∗K AK ) > λ
max (δ, ρ)

)

= P
(

max
i=1,...,u

max
K⊂Gi ,|K |=k

λmax(A ∗K AK ) > λ
max (δ, ρ)

)

The RHS upper bounded using union bound over groups of
m ≥ k distinct elements and controlling dependencies in
λmax(A ∗K AK ) for K ⊂ Gi by replacing the maximization over
K ⊂ Gi by λmax(A ∗MAM), M :=

⋃
K⊂Gi ,|K |=k K , |M| = m ≥ k .

RHS ≤ u · P
(
λmax

(
A ∗MAM

)
> λmax (δ, ρ; γ)

)

where u is the number of groups
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λmax (δ, ρ) in the BCT analysis becomes λmax (δ, ρ; γ) for each
γ := m

n ∈ [ρ, δ−1) by substituting γ for ρ; γ = ρ recovers BCT
Larger values of m decrease the combinatorial term at the
cost of increasing λmax(A ∗MAM)

Interplay btw number & size of groups,⇒ optimizing over γ
There exist an optimal γ; shown below and proof trivial

Consequently, λmax(δ, ρ) := minγ λmax(δ, ρ; γ) and our upper
bound is UBT(δ, ρ) = λmax (δ, ρ) − 1
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Form groups Gi := {K } for K ⊂ Ω := {1, 2, . . . ,N} and
Mi :=

⋃
K⊂Gi ,|K |=k K with |Mi | = m ≥ k .

Define G :=
⋃u

i=1 Gi such that |G| ≥
(
N
k

)
, to have a covering.

Lemma

Set r = (N
k )(

m
k )
−1 and draw u := rN Mi sets uniformly at random from the

(N
m) possible Mi sets. With G defined as above,

P

[
|G| <

(
N
k

)]
< C(k/N)N−1/2e−N(1−ln 2), where C(p) ≤ 5

4
(2πp(1−p))(−1/2)

Corollary

Given the above lemma, as n → ∞ in the proportional-growth
asymptotics, the probability that all the (N

k ) K ⊂ Ω are covered by G
converges to one exponentially in n.
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Proof.

Groups with m ≥ k distinct elements, contains (m
k ) K ⊂ Ω

⇒ at least (N
k ) (

m
k )
−1

=: r groups to cover each K

For any random group, Mi & K ,P (Mi ⊃ K) = 1/r and

P (G 2 K) = (1 − 1/r)u ≤ exp (−u/r)

A union bound over (N
k ) K , yields P

[
|G| <

(
N
k

)]
<

(
N
k

)
e−u/r

The RHS of Sterling’s Inequality gives(
N
pN

)
≤ 5

4
(2πp(1 − p)N)(−1/2)eNH(p), H(p) ≤ ln 2 for p ∈ [0, 1]

Choosing u = rN completes proof of lemma.

Letting n → ∞ proves the corollary.
�
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U(δ, ρ) L(δ, ρ)

Algorithms for calculating lower bounds of L(k , n,N;A) &
U(k , n,N;A) by Dossal et. al. and Journée et. al. respectively

U(k , n,N;A) L(k , n,N;A)
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Sharpness ratios Improvement ratios
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RIC bounds C.T. B.C.T. B.T.
Factor of empirical data 2.74 1.83 1.57

Factor 1.57 decreases to about 1.05 for ρ < 1
100 , where the

CS results are applicable
BCT suffers from excessive overestimation when δρ ≈ 1/2
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Phase Transitions Inverse Phase Transitions
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Phase Transitions based on BCT bounds [B.C.T.T., 2011]
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Small improvement on phase transitions, ≈ 0.5 − 1% higher

Minimum measurements comparison for the algorithms
Bounds ℓ1 IHT SP CoSaMP
Blanchard et. al. 317k 907k 3124k 4923k
Bah & Tanner 314k 902k 3116k 4913k

Conditions giving the phase transitions are driven by L (δ, ρ);
precisely depending on 1 − L (δ, ρ)

Our improvement has been greater inU (δ, ρ) than in L (δ, ρ)

Even with improvements inU (δ, ρ) tightening from a max
factor of 1.57 to about 1.05 in this regime of δ and ρ
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Our bounds valid for finite (k , n,N), satisfying specified probs.
Probabilities extremely small, even for small (k , n,N) and ǫ

Bounds on P
(
L(k , n,N) > LBT (δn, ρn) + ǫ

)

k n N ǫ Prob
100 200 2000 10−3 2.9 × 10−2

200 400 4000 10−3 9.5 × 10−3

400 800 8000 10−3 2.9 × 10−3

Bounds on P
(
U(k , n,N) > UBT(δn, ρn) + ǫ

)

k n N ǫ Prob
100 200 2000 10−5 2.8 × 10−18

200 400 4000 10−5 9.1 × 10−32

400 800 8000 10−5 2.8 × 10−58
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Approximation of Bounds
Implications for CS

Theorem (Fixed δ and ρ→ 0)

Let Ũ(δ, ρ) and L̃(δ, ρ) be the approximations ofU(δ, ρ) and
L(δ, ρ) respectively. For a fixed δ as ρ→ 0,

L̃(δ, ρ) = Ũ(δ, ρ) =
√

2ρ log (δ−2ρ−3) + 6ρ

Theorem (ρ as a function of δ)

Let ργ(δ) = 1
γ log(δ−1)

and let the approximations ofU(δ, ρ) & L(δ, ρ) be

Ũ (δ, ργ(δ)) & L̃ (δ, ργ(δ)) respectively. For a fixed γ as δ→ 0,

Ũ (δ, ργ(δ)) =
√

2ρ log (δ−2ρ−3) +
2
3
ρ log

(
δ−2ρ−3

)

L̃ (δ, ργ(δ)) =
√

2ρ log (δ−2ρ−3) − 2
3
ρ log

(
δ−2ρ−3

)
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Approximation of Bounds
Implications for CS

Corollary (From Theorem of ρ as a function of δ)

Let ργ(δ) = 1
γ log(δ−1)

and let Ũ
(
δ, ργ(δ)

)
and L̃

(
δ, ργ(δ)

)
be the

approximations ofU(δ, ρ) and L(δ, ρ) respectively. In the limit,
δ→ 0 and γ→ ∞, both Ũ

(
δ, ργ(δ)

)
and L̃

(
δ, ργ(δ)

)
converge to

f(γ) :=
√

2γ−1/2.
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Approximation of Bounds
Implications for CS

Corollary (Sampling Theorem for ℓ1, IHT, CoSaMP & SP)

Given a sensing matrix, A, of size n × N whose entries are drawn i.i.d.
from N(0, 1/n), in the limit as n/N → 0 the sufficient number of
measurements for CS algorithms is n ≥ γk log(N/n), with

γ = 36 for ℓ1-minimization,

γ = 93 for Iterative Hard Thresholding (IHT),

γ = 272 for Subspace Pursuit (SP) and

γ = 365 for Compressed Sampling Matching Pursuit (CoSaMP).

Derivation uses approximations and recovery conditions for
greedy algorithms µalg

(
δ, ργ(δ)

)
= 1 [B.C.T.T., 2011]

γ = 2e is known to be tight for ℓ1 [Donoho & Tanner, 2009]
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Approximation of Bounds
Implications for CS

Corollary (Sampling Theorem for OMP)

Given a sensing matrix, A, of size n × N whose entries are drawn i.i.d.
from N(0, 1/n), in the limit as k/n → 0 the sufficient number of
measurements for Orthogonal Matching Pursuit (OMP) is

n ≥ 16k 2 log(N/k) + 8k 2 log(n/k) + 24k 2.

OMP requires O
(
k2 log(N/k)

)
measurements to guarantee

exact recovery [Davenport & Wakin, 2010]

Derivation uses approximation for fixed δ with ρ→ 0 and
recovery conditionU(δ, ρ) <

√
k −
√

k − 1 [Huang et. al., ’10]
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Summary:

The random matrix quantity, RIC is an important tool of
analysis in CS and related areas

Improvement is earlier bounds achieved by grouping of
submatrices with significant column overlap

Bounds clear improvements on prior bounds and are
consistent with empirically observed data

However, improvements on bounds led to very little
improvements in phase transitions for CS algorithms

Finite representation of bounds shows remarkable accuracy

Asymptotic approximation of bounds lead to sampling
theorems consistent with CS literature

Bubacarr Bah with Prof. Jared Tanner Random matrix theory questions arising in Compressed Sensing



Outline
Compressed Sensing (CS) and Related Areas

Restricted Isometry Property (2) - RIP2
Asymptotic Approximation of RIC2 Bounds

Conclusion

Note:

In the spirit of reproducible research, software and web forms that
evaluate LBT(δ, ρ) andUBT(δ, ρ) are publicly available at
http://ecos.maths.ed.ac.uk/ric bounds.shtml
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THANK YOU
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