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Compressed Sensing (CS) and Related Areas

Compressed Sensing & Spare Approximation

@ Signal x € RN, k-sparse.

@ Sensing matrix A € R™N; measurements y = Ax, (n < N).
@ Problem (P¥): min |ixllo st Ax=y.
xeRN

@ Solution: I; minimizations & Greedy Algorithms (OMP, IHT, ...)

Rank Minimization & Matrix Completion

@ Matrix X € R™" low rank rank(X) < r.

@ Linear map A(X) : R™" — RP; measurements
y = A(X) e RP.
@ Problem (P)) : m)jn rank(X) st A(X)=y.

@ Solution: || - |« minimizations, & Greedy Algorithms (SVT, ...) ®

v
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Compressed Sensing (CS) and Related Areas

CS Applications

@ Medical Imaging: MRI, fMRI, Radiology, ...

@ Infrared spectroscopy & Seismic imaging
@ Single pixel camera & Analog-to-digital converters
@ DNA micro-arrays, radar, wireless communications, ...

Tools of Analysis

@ Coherence [Donoho & Huo; Elad & Bruckstein]
Restricted isometry property [Candés & Tao]
Nullspace property [Donoho & Huo]

Stochastic geometry  [Donoho; Donoho & Tanner]

o
o
o
o

Message passing [Donoho, Maleki & Montanari]
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Restricted Isometry Constants (2) - RIC,

Improved RIC; Bounds for the Gaussian Ensemble
Restricted Isometry Property (2) - RIP, Numerical Results

Performance Guarantees for CS Algorithms
Finite (k, n, N) interpretations

@ RIP certainly a popular tool of analysis; FOCM’'11?

@ With the introduction of RIP;, we refer to the standard RIP as
RIP, - the subscripts 1 & 2 refer to the norms used

Definition

RIC, of A of order k is the smallest number Ry, for all k-sparse x,
such that ) ) )
(1= R)lIxIl; < IAXIIS < (1 + R)lIxIi

Definition (Rank Minimization Equivalence)

RIC; of A(X), the r-restricted isometry constant, is the smallest
number R;, for all matrices X of rank at most r, such that

(1= R)IXIE < IAX)I5 < (14 R)IXIZ
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Restricted Isometry Constants (2) - RIC,
Improved RIC; Bounds for the Gaussian Ensemble
Restricted Isometry Property (2) - RIP, Numerical Results

Performance Guarantees for CS Algorithms
Finite (k, n, N) interpretations

@ A having RIP, means that A is a near isometry for k-sparse x
@ RIP, gives a sufficient guarantees for exact recovery

{1 minimization works if:
@ R3x + 3R4k <2, [Candés, Romberg & Tao, 2006]
® Ry < V2-1, [E.Candés, 2008]
@ Ry <2/(3+ V7/4) ~0.4627, [S. Foucart, 2010]

Similarly for Greedy Algorithms:

® IHT: Rax < 1/V3, [S. Foucart, 2011]

® CoSaMP: R4 < 4/2/(5+ V73), [S. Foucart, 2011]
@ Subspace Pursuit (SP): Rz < 0.06, [Dai & Milenkovic, 2009] ®
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Restricted Isometry Constants (2) - RIC,
Improved RIC; Bounds for the Gaussian Ensemble
Restricted Isometry Property (2) - RIP, Numerical Results

Performance Guarantees for CS Algorithms
Finite (k,n, N) interpretations

@ A more quantitative definition is the asymmetric RIP;:

Definition
RIC, of A of order k is the smallest L & U, for all k-sparse x, s.t.

(1 - L(k,n,N; A))lIxI5 < [IAxI5 < (1 + U(k, n, N; A))lIx]13.

® RIC;, of A & eigenvalues of A;AK, forQ=1{1,2,3,...,N}

14+ U(k,n,N;A) = max AT*(AZA
+ U( ) KcQ,K|=k ( K K)
1-L(k,n,N;A) = min A" (A:A

( ) KcQIK|=k ( K K)

@ Thus L & U are smallest & largest deviation from unity of
smallest & largest A (A;AK) respectively
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Restricted Isometry Constants (2) - RIC,

Improved RIC, Bounds for the Gaussian Ensemble
Restricted Isometry Property (2) - RIP, Numerical Results

Performance Guarantees for CS Algorithms
Finite (k,n, N) interpretations

@ RIC, combinatorial, intractable for deterministic A, NP-hard

@ Probabilistic bounds possible = the use of random matrices
@ Different approaches include:
o Largest ensembles with bounded RIC,, [Mandelson et. al.]

@ RIC; bounds for partial Fourier matrices, [H. Rauhut]
@ RIC, bounds for Gaussian matrices, [C. & Tao; B.C.T]]

Goal:

Calculate accurate RIC, bounds for Gaussian random matrices
with entries drawn i.i.d. from N(0, 1/n)

Motivation:

(1) Using the Gaussian to model zero mean i.i.d ensembles
(2) Easier! - Lot of literature available on the Gaussian ensemble ]
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Restricted Isometry Constants (2) - RIC,

Improved RIC, Bounds for the Gaussian Ensemble
Restricted Isometry Property (2) - RIP, Numerical Results

Performance Guarantees for CS Algorithms

Finite (k, n, N) interpretations

Linear growth or proportional-growth asymptotics(p.g.a)

Problem instances (k, n, N) considered is where the following
ratios converge to nonzero bounded limits:
K =pp—pad & =5,-6 for (6,p) € (0,1)? as (k,n,N) — co.

Theorem

Let A be a matrix of size n X N whose entries are drawn i.i.d. from
N(0,1/n). For any € > 0, in the proportional-growth asymptotics

P(L(k,n,N) < LET(8,p)+€) > 1 & P(U(k,n,N) < UBT(6,p)+€) - 1

exponentially in n.

@ Prior bounds by Candes & Tao; and Blanchard et. al. (BCT)

®
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Restricted Isometry Constants (2) - RIC,
Improved RIC, Bounds for the Gaussian Ensemble
Restricted Isometry Property (2) - RIP, Numerical Results

Performance Guarantees for CS Algorithms
Finite (k, n, N) interpretations

@ Derivation technique: finding smallest 2™ (¢, p) > 0 such
that in the p.g.a, for Ux = U(k, n, N; A),

P L+ Uc> ™ (0.0) = P _max 4™ () > 4™ (6,0)) 0
cQ|K|=

@ Candes & Tao used union bounds and concentration of
measure bounds on the extreme eigenvalues of Wishart
matrices - valid for sub-gaussian matrices

Pl i) > 40 o)
< (Z)P (1™ (AxAK) > ™ (6, p))

where 1M (5,p) = []_ + \//3 + (25*1’_’(6/)))1/2]2
@ Their upper bound is then U7 (8,p) := A (5,p) - 1 ®
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Restricted Isometry Constants (2) - RIC,
Improved RIC, Bounds for the Gaussian Ensemble
Restricted Isometry Property (2) - RIP, Numerical Results

Performance Guarantees for CS Algorithms
Finite (k,n, N) interpretations

@ BCT achieved tighter bounds using union bounds and bounds
of probability density functions of the extreme eigenvalues of
Wishart matrices  [A. Edelman, 1989]

max max . N .
P(Kcrgﬁ(x k/l (ARAk) > 4 (6,p)) < ‘ﬁmax(dnpn)(k)fmax(m,n,/l)d/l
@ But fnax(m, n; /l) < Pmax(N, 4; p) exp (N - Ymax (4, 0)) where
Ymax (1,p) = 3 [(L+p)INA=pnp+1+p - 4]
@ Bounding ( ) by the Stirling’s formula the exponent of the
exponential term becomes §¢max (1™ (8, p) , p) + H(p)

@ Inthe p.g.a only the exponential term matters and
AM¥ (g, p) becomes a solution to when the exponent is zero

@ Their upper bound is thus UBCT (8, p) = AM¥ (6, p) —
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Restricted Isometry Constants (2) - RIC,
Improved RIC, Bounds for the Gaussian Ensemble
Restricted Isometry Property (2) - RIP, Numerical Results

Performance Guarantees for CS Algorithms
Finite (k,n, N) interpretations

@ Improvement on BCT bounds achieved by grouping
submatrices, i.e. for Ax and Ak: with |[K N K’| > 1, hence
decreasing the combinatorial term significantly

Pl max A™*(ALAk) > 2™ (s,
(A A > 47 (5.0)

=P| max max AT*(AZAk) > A" (s,
(izl»---’UKCQi,IKlzk ( K K) ( ,0)

@ The RHS upper bounded using union bound over groups of
m > k distinct elements and controlling dependencies in
A" (AgAk) for K C G; by replacing the maximization over
K c g,' by AmaX(AK/’AM), M = UKCgi»|K|:k K, |M| =mz=Kk.

RHS<u-P (/lmax (A,T/,AM) > A" (g, p; y))

where u is the number of groups
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Restricted Isometry Constants (2) - RIC,
Improved RIC, Bounds for the Gaussian Ensemble
Restricted Isometry Property (2) - RIP, Numerical Results

Performance Guarantees for CS Algorithms
Finite (k, n, N) interpretations

@ 1M (4, p) in the BCT analysis becomes 1M (4, p; y) for each
y =2 € [p,671) by substituting y for p; y = p recovers BCT

@ Larger values of m decrease the combinatorial term at the
cost of increasing A™*(Ay Au)

@ Interplay btw number & size of groups, = optimizing over y

@ There exist an optimal y; shown below and proof trivial

U = AT(S,p5p) - 1

T = A" (E,0 Ymin) - 1

A (B,p5P)

A5, Youra) A== @

Ry=p YVumin Y
@ Consequently, 1M#(, p) := min, A™®(4, p; y) and our upper _
bound is UBT(6,p) = A (5,p) - 1 ®
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Restricted Isometry Constants (2) - RIC,
Improved RIC, Bounds for the Gaussian Ensemble
Restricted Isometry Property (2) - RIP, Numerical Results

Performance Guarantees for CS Algorithms
Finite (k, n, N) interpretations

@ Form groups Gi :={K} for K c Q :=1{1,2,...,N}and
M; = UKCQi,IK|=k K with |M,| =mz>Kk.

@ Define G := (JL, Gj such that |G| > (’,:’) to have a covering.

Setr= (2’)(’,:’)_l and draw u := rN M; sets uniformly at random from the
(M) possible M; sets. With G defined as above,

(2np(1-p))/?)

Al

N
P [lGl < (k)] < C(k/N)NY2e=NA-IN2) " here C(p) <

Given the above lemma, as n — oo in the proportional-growth
asymptotics, the probability that all the (2’) K c Q are covered by G
converges to one exponentially in n. %]
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Restricted Isometry Constants (2) - RIC,

Improved RIC, Bounds for the Gaussian Ensemble
Restricted Isometry Property (2) - RIP, Numerical Results

Performance Guarantees for CS Algorithms

Finite (k, n, N) interpretations

@ Groups with m > k distinct elements, contains (/) K c Q
= at least (}) (’,?)7l =: r groups to cover each K
@ For any random group, M; & K,P (M; > K) = 1/r and

P(G?K)=(1-1/r)" <exp(-u/r)

N N
@ A union bound over (}) K, yields P |G| < (k) < (k)e‘“/f
@ The RHS of Sterling’s Inequality gives
N
(pN) < Z(an(l — p)N)CH2NHP) - H(p) <In2 for p € [0,1]

@ Choosing u = rN completes proof of lemma.
@ Letting n — oo proves the corollary.
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Restricted Isometry Constants -RIC,

Improved RIC; Bounds for the G sian Ensemble
Restricted Isometry Property (2) - RIP, Numerical Results

Performance Guarantees for CS Algorithms

Finite (k, n, N) interpretations

@ Algorithms for calculating lower bounds of L(k,n,N; A) &
U(k,n, N; A) by Dossal et. al. and Journée et. al. respectively

U(k,n,N; A) L(k,n,N;A)
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Restricted Isometry Con
Improved RIC; Bounds f > Ge an Ensemble
Restricted Isometry Property (2) - RIP, Numerical Results

Performance Guarantees for CS Algorithms
Finite (k,n, N) interpretations

Sharpness ratios Improvement ratios
1 1
12 max(L2TL8T)
== min(PCTLET)
max(UPCTIU®T)
115 = = minUTutT
4 max(L(3,p)/L(k.n,N)) 11
120t = = min(L(3p)/L(k.nN))
‘ max(U(8,p)/U(k,n,N))
== min(U(3,p)/U(k,n.N)) LOB o T -
ER1 IR B
Iy e -
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3 P

RIC bounds C.T. | B.CT. | B.T.
Factor of empirical data | 2.74 | 1.83 | 1.57

@ Factor 1.57 decreases to about 1.05 for p < ﬁ, where the
CS results are applicable .
@ BCT suffers from excessive overestimation when dp ~ 1/2 ®

Bubacarr Bah with Pro



Restricted Isometry Property (2) - RIP,

Restricted Isometry Constants -RIC,

Improved RIC; Bounds for the G an Ensemble
Numerical Results

Performance Guarantees for CS Algorithms

Finite (k, n, N) interpretations

Phase Transitions
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Restricted Isometry Constants (2) - RIC,
Improved RIC; Bounds for the Gaussian Ensemble
Restricted Isometry Property (2) - RIP, Numerical Results

Performance Guarantees for CS Algorithms
Finite (k,n, N) interpretations

@ Small improvement on phase transitions, ~ 0.5 — 1% higher

Minimum measurements comparison for the algorithms
Bounds 01 IHT SP CoSaMP
Blanchard et. al. | 317k | 907k | 3124k 4923k
Bah & Tanner 314k | 902k | 3116k 4913k

@ Conditions giving the phase transitions are driven by £ (6, p);
precisely depending on 1 — £(6,p)

@ Our improvement has been greater in U (8, p) than in L (6, p)

@ Even with improvements in U (6, p) tightening from a max
factor of 1.57 to about 1.05 in this regime of 6§ and p
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Restricted Isometry Constants (2) - RIC,
Improved RIC; Bounds for the Gaussian Ensemble
Restricted Isometry Property (2) - RIP, Numerical Results

Performance Guarantees for CS Algorithms
Finite (k, n, N) interpretations

@ Our bounds valid for finite (k, n, N), satisfying specified probs.
@ Probabilities extremely small, even for small (k, n, N) and €

Bounds on P(L(k, n,N) > L87(6,,0n) + e)
k n N € Prob

100 | 200 | 2000 | 1073 2.9 %1072

200 | 400 | 4000 | 1073 9.5x1073

400 | 800 | 8000 | 1072 2.9x1073

Bounds on P (U(k, n,N) > UBT (6, pn) + e)
k n N € Prob

100 | 200 | 2000 | 107° 2.8x10718

200 | 400 | 4000 | 10°° 9.1 x 10732

400 | 800 | 8000 | 10~° 2.8x107%8 @
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Approximation of Bounds

i i i Implications for CS
Asymptotic Approximation of RIC, Bounds mplications for

Theorem (Fixed ¢ and p — 0)

Let U(65, p) and L(5,p) be the approximations of U(5,p) and
L(8,p) respectively. For a fixed 6 as p — O,

Z(6.p) = U(6.p) = ~2plog (672p™) + 6p

| \

Theorem (p as a function of ¢)
Let p,(6) = m and let the approximations of U(6, p) & L(6,p) be
U (6,p,(5)) & L (6, p,(5)) respectively. For a fixedy as § — 0,

UG.p(0) = plog(52p7) + 2plog(57%7)

L(6.py(5) = ZPlog(é‘zp‘3)—%plog(é‘zp‘S)
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Approximation of Bounds
Implications for CS

Asymptotic Approximation of RIC, Bounds

Corollary (From Theorem of p as a function of ¢)

Letp,(6) = W and Ietﬂ(é py(6 )) and Z((S py(é)) be the
approximations of U(8, p) and L(8, p) respectively. In the limit,
6 —» 0andy — oo, both (Ll(é, py(é)) andlj(é py(é)) converge to

fly) := V2y /2.
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Approximation of Bounds

Asymptotic Approximation of RIC, Bounds plcalesliofes

Corollary (Sampling Theorem for ¢4, IHT, CoSaMP & SP)

Given a sensing matrix, A, of size n x N whose entries are drawn i.i.d.
from N(0,1/n), in the limit as n/N — 0 the sufficient number of
measurements for CS algorithms is n > yk log(N/n), with

@ y = 36 for ¢1-minimization,

v = 93 for Iterative Hard Thresholding (IHT),

o
@ y = 272 for Subspace Pursuit (SP) and
@ y = 365 for Compressed Sampling Matching Pursuit (CoSaMP).

@ Derivation uses approximations and recovery conditions for
greedy algorithms 29 (6,,07(5)) =1 [B.C.T.T,2011]

y = 2e is known to be tight for {1  [Donoho & Tanner, 2009]

©
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Approximation of Bounds

Asymptotic Approximation of RIC, Bounds plcalesliofes

Corollary (Sampling Theorem for OMP)

Given a sensing matrix, A, of size n x N whose entries are drawn i.i.d.
from N(0,1/n), in the limit as k/n — O the sufficient number of
measurements for Orthogonal Matching Pursuit (OMP) is

n > 16k?log(N/k) + 8k?log(n/k) + 24k?.

@ OMP requires O (k2 Iog(N/k)) measurements to guarantee
exact recovery [Davenport & Wakin, 2010]

@ Derivation uses approximation for fixed 6 with p — 0 and
recovery condition U(6, p) < Vk- vk -1 [Huanget. al., 10]
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Conclusion

@ The random matrix quantity, RIC is an important tool of
analysis in CS and related areas

@ Improvement is earlier bounds achieved by grouping of
submatrices with significant column overlap

@ Bounds clear improvements on prior bounds and are
consistent with empirically observed data

@ However, improvements on bounds led to very little
improvements in phase transitions for CS algorithms

@ Finite representation of bounds shows remarkable accuracy

@ Asymptotic approximation of bounds lead to sampling
theorems consistent with CS literature
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Conclusion

(\[e] (=K

In the spirit of reproducible research, software and web forms that
evaluate £87(6, p) and UBT (6, p) are publicly available at
http://ecos.maths.ed.ac.uk/ric_bounds.shtml

A\
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Conclusion

THANK YOU
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